Plastic Regrind Saves on Money and Materials

Read more

What OEMs Need to Know About Choosing Medical Device Colors and Plastics

Using color in medical device design is both practical and a business strategy. Switches and keyboard buttons, for example, might be grouped and color-coded for user-friendliness and improved functionality.1 Medical device color is also used aesthetically to complement surroundings, and strategically to carry through OEM branding on medical devices.

Read More

6 Plastics Industry Trends Predicted to Impact Manufacturers in 2020

What does 2020 hold for the plastics industry? Several trends that emerged in 2019 continue to be refined and amplified:

Read More

Molding Medical Plastic Parts That Outperform Expectations

Medical plastic parts are among the most nuanced applications produced by custom injection molders. The complex nature of medical devices present unique design and engineering challenges, often starting with appropriate plastic selection.

Read More

How to Avoid Common Stresses in Insert Molding

Insert molding is a process that requires an insert — typically metal — to be pre-placed in the tool for injected plastic to flow around. Encapsulating the insert with plastic creates a single molded plastic piece that’s generally stronger than one created using secondary assembly.

Insert molding can be accomplished through two methods:

  • Manual insert loading: The generally more cost-effective way to approach very low-volume applications or extremely complex part geometries
  •  Automated insert molding: A better choice for part consistency. It minimizes human error, improves efficiencies, and ensures optimal cycle times.

Securing an insert in plastic requires precision and a thorough knowledge of how each individual substrate reacts to conditions during the injection molding process.

Read More

Green Energy from Plastic? OEMs, Eco-Initiatives, and the Future

Nearly half of all plastic ever manufactured has been made since the year 2000. In a scant two decades, production went from 250 million tons to 448 million tons1 and the race is on to shift the burgeoning over-reliance on plastic to ways that promote plastics’ use as a green energy source.

Read More

Advancements in Resins Impacting Product Design

Polymer science has made tremendous strides over the years, rapidly advancing the ability to compound a variety of resins with fillers and reinforcements that provide a vast amount of structural and chemical integrity.

Read More

How to Control Injection Molding Surface Finish

Surface finish on plastic composites can vary a great deal, depending on the physical and chemical properties of the polymer blend as well as the parameters of the injection molding process.

The first objective for a custom injection molder is working with the customer to determine how important the surface finish is for the appearance and/or performance of the final product. For example, does the product need to be eye-catching or simply functional? Depending on the answer, the material selected and the desired finish will determine the settings for the injection molding process, and any required secondary finishing operations.

Read More

Why OEMs Choose Polyether Ether Ketone (PEEK) Material

North American resin production topped out at nearly 28.7 billion pounds April of 2019, a 2.9% increase compared to the same time period in 2018.1 The uptick suggests that engineered resins continue to find their place as preferred materials within industries requiring precision injection molded parts and devices such as in the medical, automotive, and defense & public safety markets.

Polyether ether ketone (PEEK) resin is regarded as ideal for many complex applications due to its inherent characteristics and injection molding versatility. Is this thermoplastic right for your project?

Read More

4 Factors That Determine Resin Selection for Medical Applications

Medical device performance is inextricably linked to the characteristics of the plastics used. Enhanced properties such as strength, flexibility, transparency, biocompatibility, and temperature and chemical resistance ensure patient safety. They are also mandated by the stringent regulations and classifications of the Food and Drug Administration (FDA) and The U.S. Pharmacopeial Convention (USP).

Read More

Subscribe to Our Blog!

New Call-to-action

Have A Question?