Quality drives performance in any product. For critical-use applications, the stakes are even higher. End-user safety, health, and lives could be jeopardized if a product malfunctions.
To mitigate high degrees of risk, manufacturers must have the utmost confidence in their injection molding partner’s experience with tight tolerance injection molding.
Repeatable and reliable part production isn’t a given when a project is first presented to Kaysun.
Well before the injection molding equipment is made ready for a run, experts in the in-house Quality Lab are at work gaining deep insights into the part design, thoroughly examining the part practicalities and potential pitfalls, and identifying areas for improvement. Kaysun project and quality control engineers and those of the customer collaborate to share knowledge, make adjustments, and arrive at the best possible production process, tooling, and application outcome.
Undoubtedly, design engineers assume a lot of responsibility when developing parts with tight injection molding tolerances. When margins are as slim as +/- .001 inches in some medical, automotive, industrial, and consumer applications it’s a given that design drives injection-molded part performance. Likewise, the design is the first place to seek answers should something go wrong with the tight tolerance part.
Managing tight tolerance injection molding — and, by extension, taking some pressure off of designers — is done most effectively when you follow these three expert tips:
Tool design is an essential and sometimes underestimated part of injection molding. Often, tooling is principally discussed in terms of expense since it can be among the largest investment an OEM makes in a project.
Identifying and addressing problems early in the injection molded product development process prevents costly issues that could impact manufacturability: plastics selection, tight tolerances, and secondary operations. Fortunately, two methodologies — DfM and FMEA — help manage injection molding risk.
First, we need to explore the meaning of DfM. Design for Manufacturability (DfM) is the process of consciously and proactively designing products to optimize all facets of manufacturing. It aligns engineering and production in the design phase, ensuring cost and time efficiencies, superior quality, regulatory compliance, and end-user satisfaction.
Maximizing DfM's benefits depends on prioritizing Failure Mode Effect Analysis (FMEA) within the larger plastic part analysis to assess risk probability. FMEA is but one example of the technical expertise required to successfully execute DfM for complex applications. It also underscores the importance of partnering with an injection molder experienced in DfM to reap the following benefits.
An estimated 80% of a project’s costs are determined within the design phase.1 For injection molded parts, tooling often consumes a good share of the budget and decision-making, but it’s not the only consideration.
Value-added services (also known as secondary operations) are essential and sometimes overlooked during design because of their injection molding post-processing status. However, identifying the proper value-added services early in the project timeline can help eliminate injection molding defects that could ultimately lead to costly fixes.
Plastics continue to become manufacturers' primary solution to weight, sustainability and compliance challenges. Yet, performance is largely dictated by the resin chosen for a specific injection-molded part.
The question is, which material is the right one?
For an accurate answer, manufacturers turn to Finite Element Analysis (FEA) of plastic components and custom injection molders experienced in all aspects of testing.
There’s no denying that pandemic-related, weather-influenced, and manmade disruptions have caused chaos within the plastics industry. For OEMs, finding injection molding solutions during these turbulent times is problematic. Finding knowledgeable molders to take on complicated design, engineering, injection molding, and other challenges that less skilled molders can’t handle is equally as difficult.
OEMs across many industries enjoy the benefits of injection molding. It’s ideal for consistent, affordable production of a wide range of high-quality complex plastic parts that can withstand nearly any environment.
That’s reason enough to rank plastic injection molding high on the list of go-to solutions, but there’s more. To better understand how and why manufacturers use the process, let’s take a look at the top 14 benefits of plastic injection molding (listed in no particular order):
SEARCH THE BLOG
Blog Posts by Topic
Blog Posts by Topic
- Injection Molding Process (70)
- Plastic Part Design (51)
- Medical (42)
- Plastics / Resins (39)
- Supply Chain (36)
- Tooling / Molds (25)
- General Manufacturing (24)
- Scientific Molding (17)
- Metal-to-Plastic (15)
- Automotive (14)
- Overmolding (10)
- Automation (8)
- Industrial (7)
- Consumer (4)
- Editorial (4)