Scientific Molding in Action [VIDEO]

    Read more

    Why Scientific Molding Requires Specialized Engineers

    Much has been said about the ability of scientific molding to provide optimal control of the injection molding process – and in turn – help manufacturers that use precision-molded parts keep pace with competitors and be first to market. Scientific molding improves part quality by removing guesswork from the injection molding process, but many OEMs still have questions about what really makes it work in the first place. Is it just injection molding with high-tech equipment? The answer is actually the engineers who specialize in it.

    Read More

    5 Reasons Why Medical Device OEMs Need Full Service Injection Molders

    Given the promised speed and generally low price points, commodity injection molders are attractive to OEMs in many industries. However, deals struck with these molders — overseas and domestically — can pose potential problems in communication and quality, among other issues.

    Read More

    Scientific Molding: The Key to Quality, Consistency and Profitability

    In this age of global competitiveness and tough regulation, superior quality is the name of the game in differentiating you from competitors and increasing your market share.

    OEMs in various industries are designing increasingly complex components, products and devices with higher injection molding tolerances that must meet stringent quality standards, regulatory compliance and cost-effectiveness. This can be achieved through scientific molding, the best designed and controlled manufacturing process possible.

    Read More

    The 6 Essential Steps of Scientific Molding [Infographic]

    As criticality of use ratchets up on injection molded products and devices, plastic components are expected to perform to stringent quality and regulatory standards.

    Read More

    The Process of Scientifically Debugging an Injection Mold [Infographic]

     

    The practice and purpose of debugging a mold is at the very core of scientific molding. This critical step ensures consistent and repeatable production of flawless molded parts by having engineers push the mold relentlessly under realistic conditions (and sometimes beyond); their goal is to identify and correct weaknesses before the mold is called into action.

    Here’s a look at the basic process of debugging, including an infographic that visually summarizes each step:

    Read More

    Improving Product Development Lead Time

    There isn’t a whole lot that injection molders can do to speed up how long it takes to receive hard tooling. While they wait, however, they can take a number of key steps to streamline the product development process, up to and following the completion of the actual injection mold—saving up to a week or longer in lead time.   

    Read More

    8 Steps to Optimizing the Injection Molding Process

    The complexities of engineering a plastic part or product for use in a critical-use application must translate to moldability. If a molder is inexperienced in mold design and process optimization, there’s a good bet they won’t be familiar with methodologies essential for creating a highly efficient production process such as scientific molding and, more specifically Design of Experiments (DOE) within scientific molding. This article discusses key steps tool and process engineers take to ensure consistent and repeatable manufacturability of flawless molded parts.

    Read More

    Preventing Common Manufacturing Defects in Medical Applications

    Manufacturers of medical devices and other medical applications often turn to a complex injection molder for help correcting defects in their engineered plastic components. At Kaysun, we actively seek to prevent defects before they even occur by using a design for manufacturability (DfM) approach that incorporates a comprehensive mold flow analysis and extensive plastics engineering experience to identify any potential issues in the design phase and determine the best strategy to produce defect-free parts.

    Read More

    What is Design of Experiments in Scientific Molding?

    Each new injection molding project has three inherent goals: performance for the customer; production efficiency for the manufacturer; and reliability for the end user. These goals are reasonable. The challenge lies in accomplishing all three within a desired timeframe and budget. To do so, plastics engineers at complex injection molders turn to Design of Experiments (DOE) to identify flaws that would otherwise derail project success.

    Read More