We feature news and insights tailored just for you. Check back often or subscribe to our email list to receive updates to your inbox.

GD&T: A Practical Approach to Dimension and Tolerance

Read more

Innovation in Injection Molding Process, Design and Tooling

While the injection molding process is a mainstay for many industries, it isn’t static. Molders are continually challenged with evolving their knowledge and use of emerging tooling technologies, materials and trends to make products that are competitively advantageous and profitable for manufacturers.

Read More

Chemical Resistant Resins for Medical Applications

Critical-use medical devices are essential in the performance of important and often life-saving tasks. As such, they often boast complicated designs and functionality that require the expertise of a complex injection molder to produce. However, that’s only part of the equation.

Read More

What is Design of Experiments in Scientific Molding?

Each new injection molding project has three inherent goals: performance for the customer; production efficiency for the manufacturer; and reliability for the end user. These goals are reasonable. The challenge lies in accomplishing all three within a desired timeframe and budget. To do so, plastics engineers at complex injection molders turn to Design of Experiments (DOE) to identify flaws that would otherwise derail project success.

Read More

Finite Element Analysis Is Critical for Plastic Parts

The exact strength and flexibility of plastics can be easily determined with finite element analysis (FEA) techniques. The FEA process subdivides the product or part into finite-sized units of simple shape. Mathematical equations are used to test each unit for displacement, from which the stresses and strains can be calculated.

Read More

What is Design for Manufacturability in Injection Molding?

In broadest terms, Design for Manufacturability (DfM) — also known as Design for Manufacturing — is the process of consciously and proactively designing products to optimize all facets of manufacturing, including injection molding. DfM simultaneously helps ensure cost and time efficiencies, superior quality, regulatory compliance and end user satisfaction. Since manufacturing processes vary, there are set guidelines for DfM practices that define tolerances, rules and best practices.

Read More

How Plastic Component Design Impacts Military Safety

The safety and welfare of military personnel is always a top priority, but sometimes that goal puts manufacturing focus on the end product instead of the process. In the case of engineering critical-use, injection-molded parts for military applications, the design holds the key to many benefits the end product will deliver. 

Read More

How Plastics Help the Military Keep Pace with Technology

Today’s military mission-readiness is heavily dependent on technology, necessitating product reliability and extended life cycles that far exceed the typical 18 months of consumer electronics — sometimes into decades.

Read More

How Co-Engineering Controls Failure in Use for Anticipated Product Life

When it comes to performance, industrial or complex consumer goods must outlive their anticipated lifetimes in order to accomplish two important goals: meeting customer expectations and mitigating warranty claims.

Read More

Is Metal-to-Plastic Conversion Feasible for Your Industrial Application?

As we discussed in a recent article, a number of industrial sectors are converting metal components to plastic to gain efficiencies in cost, weight, performance, aesthetics and durability. All of these reasons are convincing arguments for metal-to-plastic conversion; however, the process isn’t right for all industrial applications. 

Read More