Ken Glassen

Recent Posts
Success in the injection molding business isn’t limited to having the right equipment or the latest technologies. It's a good start, of course, but it takes more to meet the needs of customers that require custom injection molding for complex applications completed under challenging time and cost constraints.
Custom injection molders must have top toolmakers in their supply chains that prioritize manufacturing excellence and customer service. Core to this philosophy is that toolmakers must treat the injection molders’ customers as their own.
Custom injection molding projects are, by nature, an expensive undertaking. Part development and tooling design/build often account for the majority of the budget, particularly in the case of intricate components. The consistency, quality, and cost of the part produced largely hinge on optimizing these two aspects of the project. Missteps can lead to expensive setbacks, product defects, and lower profits.
Generally speaking, Design for Manufacturability (DfM) — or Design for Manufacturing — is the process of consciously and proactively designing products to optimize all facets of manufacturing.
DfM methodology aligns engineering and production in the design phase, ensuring cost and time efficiencies, superior quality, regulatory compliance, and end-user satisfaction. Problems are identified and addressed early in the product development process, preventing costly issues that could impact manufacturability: raw materials selection, tolerances, and secondary processing.
Regardless of application, injection-molded parts and products are expected to perform to stringent quality and regulatory standards.
Ensuring successful outcomes requires application of scientific molding principles by experienced injection molders and trained engineering teams during development and production.
Custom injection molding is a go-to for OEMs across a range of industries because of design and engineering precision, production repeatability, and cost-effective solutions.
Injection molders understand that consistently delivering defect-free parts and products to these standards is a top priority and a true value-add to their OEM partnerships.
Quality assurance begins in the design phase. Engineers are faced with many decisions, but among the most important are those that impact the end of the injection molding process — what has to happen to ensure the plastic part ejects cleanly?
Insert molding is a process that requires an insert — typically metal — to be pre-placed in the tool for injected plastic to flow around. Encapsulating the insert with plastic creates a single molded plastic piece that’s generally stronger than one created using secondary assembly.
Insert molding can be accomplished through two methods:
- Manual insert loading: The generally more cost-effective way to approach very low-volume applications or extremely complex part geometries
- Automated insert molding: A better choice for part consistency. It minimizes human error, improves efficiencies, and ensures optimal cycle times.
Securing an insert in plastic requires precision and a thorough knowledge of how each individual substrate reacts to conditions during the injection molding process.
Shrink rates for injection molded plastic parts vary depending on the materials used andwall thickness. Designing uniform wall thickness offers substantial shrink rate control; on the other hand, non-uniform walls can lead to large pressure drops during filling, significant differences in shrink rates, and internal stresses within the injection molded part that could cause warpage or similar defects.
Manufacturers cannot afford to lose any time in getting their products to market. Advances in technology come rapidly, ratcheting up competition for market share. To ensure success, products must be designed and produced with ultimate precision and efficiency. That efficiency depends on eliminating production delays caused by inconsistencies in the manufacturing process.
With careful planning, custom injection molding can reduce costs, optimize functionality and improve aesthetics in medical devices.
Subscribe to Our Blog!
Blog Posts by Topic
Blog Posts by Topic
- Injection Molding Process (59)
- Plastic Part Design (46)
- Medical (40)
- Plastics / Resins (31)
- Supply Chain (25)
- Tooling / Molds (25)
- General Manufacturing (16)
- Automotive (14)
- Metal-to-Plastic (13)
- Scientific Molding (13)
- Overmolding (11)
- Industrial (8)
- Automation (5)
- Consumer (3)
- Editorial (1)